Conduction velocity depression and drug-induced ventricular tachyarrhythmias. Effects of lidocaine in the intact canine heart.
نویسندگان
چکیده
Depression of myocardial conduction velocity can be an important mechanism of action of antiarrhythmic drugs but it can also facilitate arrhythmogenesis. We used lidocaine in an anesthetized canine preparation to address the hypothesis that drug-induced rate-dependent conduction velocity depression causes ventricular tachyarrhythmias. A closely spaced square array of 64 electrodes was used to determine conduction velocity longitudinal and transverse to epicardial ventricular fiber direction. Lidocaine caused rate-dependent decreases in conduction velocity that were proportionately greater in the longitudinal direction at the shortest pacing cycle lengths. Conduction velocity depression developed rapidly in the presence of lidocaine with a new steady state present by the second beat of the rapid train. Recovery from rate-dependent depression of conduction velocity was exponential with a time constant of 122 +/- 20 msec (mean +/- SD) in the longitudinal direction and 114 +/- 30 msec in the transverse direction; this difference was not significant. The relation between conduction velocity depression and ventricular arrhythmias was assessed by pacing for 3 minutes at cycle lengths of 1,000, 500, 300, and 250 msec, and for 1 minute at a cycle length of 200 msec. Arrhythmias did not occur in the baseline period in the dogs that received lidocaine, nor in 12 control dogs that were subjected to the same stimulation protocol except that saline was administered in place of lidocaine. Sustained polymorphic ventricular tachycardia (VT) occurred in six of 16 dogs given lidocaine. VT occurred in the presence of relatively high plasma lidocaine concentrations (8.4 +/- 2.3 micrograms/ml) and only at pacing cycle lengths of 300 msec or shorter. The dogs that developed VT demonstrated greater rate-dependent depression of conduction velocity than the other dogs, and activation patterns obtained just before the onset of VT showed marked conduction disturbances. Furthermore, QRS prolongation, loss of one-to-one capture, and increasingly distorted activation patterns preceded the onset of VT during fixed-rate pacing, suggesting progressive sodium channel block. In summary, rate-dependent conduction velocity depression and nonuniform activation were associated with VT in this model and can be responsible for some arrhythmias induced by antiarrhythmic drugs.
منابع مشابه
Drug-Induced Ventricular Tachyarrhythmias Effects of Lidocaine in the Intact Canine Heart
Depression of myocardial conduction velocity can be an important mechanism of action of antiarrhythmic drugs but it can also facilitate arrhythmogenesis. We used lidocaine in an anesthetized canine preparation to address the hypothesis that drug-induced rate-dependent conduction velocity depression causes ventricular tachyarrhythmias. A closely spaced square array of 64 electrodes was used to d...
متن کاملFrequency-dependent effects of amitriptyline on ventricular conduction and cardiac rhythm in dogs.
Although overdoses of tricyclic antidepressant are known to produce both sinus tachycardia and ventricular tachyarrhythmias in man, these have been assumed to occur by independent mechanisms. This study was designed to evaluate the relationship of ventricular activation frequency to the cardiotoxic effects of amitriptyline. When amitriptyline was infused into dogs with formalin-induced atrioven...
متن کاملModulation of extracellular atrioventricular node field potential pattern and ventricular rhythm by morphine in experimental atrial fibrillation in isolated rabbit heart
Introduction: Endorphins are produced by cardiomyocytes, and exert different effects on the heart. The aim of the present study is to assess morphine effects on extracellular atrioventricular (AV) node field potential pattern and ventricular rhythm of isolated rabbit heart during experimental atrial fibrillation (AF). Methods: Effects of different concentrations of morphine (10, 20, 50 and 1...
متن کاملUse-dependent effects of lidocaine on conduction in canine myocardium: application of the modulated receptor hypothesis in vivo.
Lidocaine is a commonly used antiarrhythmic drug that causes use-dependent blockade of sodium channels in vitro and reduces conduction velocity in vitro and in vivo. According to the modulated receptor hypothesis of antiarrhythmic drug action, lidocaine has a low affinity for rested sodium channels but a high affinity for open and inactivated channels. In the present experiments, we characteriz...
متن کاملAtrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine.
BACKGROUND The development of selective atrial antiarrhythmic agents is a current strategy for suppression of atrial fibrillation (AF). METHODS AND RESULTS Whole-cell patch clamp techniques were used to evaluate inactivation of peak sodium channel current (I(Na)) in myocytes isolated from canine atria and ventricles. The electrophysiological effects of therapeutic concentrations of ranolazine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 81 3 شماره
صفحات -
تاریخ انتشار 1990